2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion)

ENRE: A Tool Framework for Extensible eNtity
Relation Extraction

Wauxia Jin
Xi’an Jiaotong University
wx_jin@stu.xjtu.edu.cn

Abstract—Understanding the dependencies among code entities
is fundamental to many software analysis tools and techniques.
However, with the emergence of new programming languages
and paradigms, the increasingly common practice of writing
systems in multiple languages, and the increasing popularity of
dynamic languages, no existing framework can reliably extract
this information. That is, no tools exist to accurately extract
dependencies from systems written in multiple and dynamic
languages. To address this problem, we have designed and
implemented the Extensible eNtity Relation Extraction (ENRE)
framework. ENRE supports the extraction of entities and their
dependencies from systems written in multiple languages, enables
the customization of dependencies of interest to the user, and
makes implicit dependencies explicit. To demonstrate feasibility
of this framework, we developed two ENRE instances for
analyzing Python and Golang programs. Our experiments on
12 Python and Golang projects demonstrated the effectiveness
and flexibility of ENRE. By comparing with a commercial static
analysis tool, we show that we can extract dependencies from
Golang programs which are not supported by existing tools and
we can reveal implicit dependencies in Python.

(Demo Video: https://youtu.be/BfXpSbblyqc)

Index Terms—Entity relation extraction; Implicit dependency;

Python; Golang

I. INTRODUCTION

Understanding source code entities—such as packages,
functions, and classes—and their relations—such as Import,
Extend and Call—is critical for many kinds of software
analyses, ranging from basic coupling and cohesion measures,
to architecture recovery [1], quality evaluation [2] [3], and
malware analysis [4]. Modern software systems are often
implemented using diverse programming languages to achieve
better performance or quicker time-to-market. The dynamic
and diverse nature of these systems presents challenges to
existing static analysis tools:

1) How to support multiple languages and easily extend
this support to accommodate new languages? Different
programming languages have different types of entities and
relations. As shown in Figure 1, in Python, entities include
package, module, class, function, method member, variable,
etc. Relations include “Import”, “Inherit”, “Call”, etc. The
same relation can exist between different types of entities,
e.g., in the case of “import x” or “from x import y”,
x can a package or a module, and y can be a module, class,
function, etc. The concrete types of entities are different in
different languages. As shown in Figure 1, Golang does not

2574-1934/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE-Companion.2019.00040

Yuanfang Cai, Rick Kazman
Drexel University, University of Hawaii
yfcai@cs.drexel.edu, kazman@hawaii.edu

67

Qinghua Zheng, Di Cui, Ting Liu
Xi’an Jiaotong University
ghzheng,cuidi,tingliu @mail xjtu.edu.cn

File Package

— Module
w2 Function

=" Package

“ Function

n ff:rrpm:f, rypé,pyg math)

.~ (Import, type.go, math)

" (Embed, Circle, Vertex)

Struct

Method

Fig. 1: Entity and relation diversity in Golang and Python

2. Firstagent:
! self)

Case 1; MasterAgent.trainl()
* calls FirstAgent.run()

ey Case 20 MasterAgent.train2()
* possibly calls FirstAgent.run()
or SecondAgent.run()

Fig. 2: Call relations which Understand does not resolve

have class while Python does. A new programming language
may have additional types of entities and relations. Therefore,
we need a framework that is general enough to accommodate
different types of entities and relations.

2) How to identify implicit relations among entities?
Many languages, such as Python and Javascript, are dynam-
ically typed. Many relations among entities are implicit and
not detectable by traditional static analysis tools. As illustrated
in Figure 2, both function trainl () and train2 () call
a method named run (), which can belong to either class
FirstAgent or SecondAgent. When we use Understand
[5], one of most widely used commercial reverse-engineering
tools, to extract such dependencies, we observed that it ignores
the relation from train2 () to either FirstAgent or
SecondAgent, due to the fact that it cannot resolve which
classes the function run—this can only be determined at
runtime. This presents a problem for any analysis that relies
on coupling relations: the potentially strong dependencies
between train?2 to the other two classes are ignored.

To address these challenges, we have created a frame-

TABLE I: Tool features for code dependency analysis

Tool Multi- Multi- Implicit- Unified- Open-
Relation Language Relation Representation Source
Code2Graph X X - X -
Rexdep X v X X v
Doxygen X v X X v
Understand v/ 4 X — X
ENRE v v v v v

work which: 1) supports multiple entities and relations, 2)
supports multiple programming languages, 3) manifests
dynamic, implicit relations, 4) provides a unified represen-
tation, and 5) is open-source.

Many static analysis tools have been proposed for extracting
entities and their relations; we list some examples in Table
1. Code2graph [6] provides Call relation extraction between
function entities from Python. Rexdep [7] extracts Import
relations at the file and package level, but does not identify re-
lations between classes or functions. Doxygen [8] can generate
documentation from source code. It supports building UML
diagrams with Extend (or Inherit) relations between classes.
Both Rexdep and Doxygen can process multiple languages,
but can not extract multiple relations between code entities.
SciTool’s Understand [5] can extract most entities and relations
and supports multiple languages, but ignores relations among
dynamic entities. Also, since it is not open source, it can not
be (easily) extended to process new languages.

In this paper we propose the Extensible eNtity Relation
Extraction (ENRE') framework to extract entities and rela-
tions from different programming languages. ENRE satisfies
all requirements in Table I. Our contributions are as follows:
1) We define a unified entity and relation representation, which
is the foundation of a generic framework to process different
languages. In particular, we define Dynamic relation which
makes implicit relations in dynamic languages explicit.

2) We propose the ENRE framework to flexibly support entity
and relation extraction for new language analysis by extending
just two framework components.

3) We have instantiated the ENRE framework for Python and
Golang. We begin with these two languages because Python
is a popular dynamic language, and Golang is a relatively new
language that is not supported by most existing tools.

To demonstrate feasibility and validity, we have extracted
entities and relations from 5 Golang and 7 Python projects
using ENRE. In addition we have conducted an accuracy
check by manually comparing the results with dependencies
extracted from Understand for 2 small Python projects (noting
that Understand does not support Golang at all).

II. THE ENRE FRAMEWORK

ENRE is designed as a general, extensible framework for
extracting entities and relations from programming languages.
We first define unified entity and relation representations,
and then introduce the framework and components of ENRE.
Finally, we describe ENRE’s implementation.

Uhttps://github.com/jinwuxia/ENRE

68

A. Unified Entity Relation Representation (UERR)

Unified representations of entities and relations are the foun-
dation of our general framework. Users can define concrete
entities and relations for different languages by extending
predefined base entities and relations.

1) Entity: A code entity is an object with a given name
or identifier. We define 5 base types of code entities: Package
(code folder), File, Class (e.g. class, interface, struct), Function
(e.g. function, method member) and Variable (e.g. variable
member, local or global variable), as shown in Figure 1. An
entity has the following attributes: id, name, shortName,
containerId, childrenIdList.

2) Entity Relation: Entity relations are relationships be-
tween code entities. There is a relation from entity; to entity;
when entity; depends on entity; to complete its functionality.
We define 8 types of relations: Import, Extend (e.g. Implement,
Inherit), Call, Set (a function modifies a variable), Use (a
function reads or uses a variable), Parameter Type (a function
takes a class type as a parameter), Return Type (a function
returns a class type), and Dynamic relation. A relation has the
following attributes: sourcelId, destId, type, weight.
For instance, a Call relation has sourceId as the id of the
calling entity, destId as id of the called entity, type as
“Call”, weight as the number of the call instances between
the two entities. We now elaborate how to define and extract
the 8th relation, dynamic (implicit) relations, as illustrated in
Figure 2.

Dynamic relations are relations that can only be precisely
resolved at run-time. The difference between static and dy-
namic relations are mainly manifested in Call relations. We
define two dynamic dependencies for Call relations when
resolving a called identity, such as object .m (), where the
type of object cannot be statically determined.

1) Internal Case: The type of a callee is instantiated in
the code scope visible for the caller, as illustrated in Figure
2: first_agent is a local object created at Line 12. In
this case, we detect that MasterAgent.trainl () calls
FirstAgent.run (), and resolve the class type of the
object through its instantiation statement.

2) External Case: The type of a callee is instantiated be-
yond the code scope visible for the caller. The class ob-
ject is passed into the caller as a parameter. Based on the
Duck typing?, we resolve the callee as the method mem-
ber of the classes which define this method member. As
shown in Case 2 in Figure 2, we identify two possible
call relations: MasterAgent.train2 () possibly calls
FirstAgent.run () or SecondAgent.run ().

B. ENRE Components

Figure 3 illustrates the ENRE framework. To process a
project written in a new programming language, a user should
extend the framework and implement a few concrete com-
ponents. We call a dependency extraction program extended
from ENRE as an ENRE engine. The input of an ENRE

Zhttps://en.wikipedia.org/wiki/Duck_typing

Parsar PriRelation
S Entity Extractor Hierarchical 2
Trees Relations
Parse Trees Primitive Relations s
EntityTree HiRelation
Source Builder Analyzer Dependency
Code Outputs

Entity Generator

Relation Generator

Dependency Exporter

Fig. 3: Framework of ENRE

engine is Source Code that will be analyzed. ENRE processes
the source code and outputs dependency relations. Currently
ENRE provides JSON, XML and DOT output, and can be
extended to support other output formats.

We design ENRE using a Pipe-And-Filter pattern, so that
each component can be replaced without influencing others. It
consists of three parts:

1) Entity Generator. This component translates Source Code
into Entity Trees, an intermediate representation. It includes
two components:

a) Parser. We use Antlr [9] as the underlying Parser that
conducts lexical and syntactic analysis of source code. It
generates Parse Trees using the grammar rules of a given
language.

b) EntityTree Builder. This component traverses the Parse
Trees to build Entity Trees. Each node in an Entity Tree is a
concrete entity extending the base entities defined in UERR.
Each node can have a parent node and multiple child nodes.
For example, if file f; is defined within package p;, the parent
of f; is p;, and p; has a child f;. Nodes in Entity Trees are
annotated with relation-relevant semantics, such as “import” or
“function call” information. This component is language de-
pendent; an analyst needs to identify and implement concrete
entities from parse trees for new languages.

2) Relation Generator. This component extracts and ana-
lyzes relations from Entity Trees, using two components:

a) PriRelation Extractor. This component extracts entity
relations by analyzing the annotations in Entity Trees. For
example, f; node contains a function call annotation like
v.fa(). This component will search and resolve names v
and f,, deciding which entity this name fy is paired with.
After processing all annotations, it generates all Primitive
Relations which are direct relations in code. This component is
language-dependent because different languages have different
semantics for name scoping and resolution.

b) HiRelation Analyzer. According to hierarchical scope,
this component processes Primitive Relations and generates
Hierarchical Relations, e.g. which packages contain which
files, which files contain which functions, etc.

3) Dependency Exporter. This transforms the relations ex-
tracted from the previous two components into a specified
format, using two components:

a) Formator. This defines data models to wrap entity re-
lations. The Formator can use popular data models such as
GraphViz DOT or customized ones.

69

b) Writer. This outputs the formatted entities and relations
into file types like .CSV, . XML or .JSON.

To create an engine for a given programming language, the
user only needs to extend EntityTree Builder and PriRelation
Extractor to accommodate different entity and relation types.
The user can also extend the language-irrelevant components,
e.g. to customize a different output format.

C. Implementation

We have implemented the ENRE framework and two ENRE
engines to explore feasibility. In the EntityTree Builder com-
ponent and PriRelation Extractor, we provide interfaces for
extensions to analyze different languages. We also imple-
mented other language-independent components, we imple-
mented 3 data models in Formator—2 customized models and
a Graphviz DOT model—and we implemented XML, JSON
and DOT file Writers.

We have implemented ENRE engines to process Python
code and Golang respectively by extending EntityTree Builder
and PriRelation Extractor. For Golang, we have extracted var-
ious entities and 7 types of relations except Dynamic relation,
since Golang is statically typed. For Python, we have extracted
entities and 6 types of relations, omitting Return Type and
Parameter Type relations. The two relations are associated with
the passed or returned types which are determined dynamically
in Python.

[II. PRELIMINARY EVALUATION

As our framework is the first to support general dependency
extraction, the objective of our initial evaluation is to test its
ability to support multiple languages.

A. Accuracy Verification for ENRE

To verify the accuracy of ENRE tool, we used the ENRE
engines and processed 5 Golang and 5 Python projects of
different scales as subjects. Tables I and III list the number of
concrete entities and unique entity relations extracted using the
two ENRE engines, and their execution times. Related data and
output can be found at https://github.com/wj86/ENRE-data.

B. Sanity Check for ENRE

To the best of our knowledge, ENRE is the first framework
supporting Golang dependency extraction, and we cannot find
a comparable tool to assess its accuracy. For Python, we use
the dependencies extracted by Understand [5] as a benchmark

TABLE II: Summary of ENRE results in Golang projects

Concrete Entity Beego Hugo Dep Gogs Aws-sdk-go
Package 37 67 213 144 453

File 205 382 629 1,029 1,364
Struct 265 327 1,790 2,425 13,410
Alias 69 59 596 796 97
Interface 31 57 54 146 221
Function 766 1,188 5394 7,562 3,846
Method Member 1,290 1,293 1,661 5,182 83,841
Entity Relation

Import 95 530 225 389 3,358
Extend 27 67 60 170 45

Call 660 1,295 9,869 11,005 7,619
Set 3,875 6,501 14,783 24,078 100,437
Use 7,150 10,208 28,942 46,997 206,890
Parameter Type 290 462 2,594 3,336 34,044
Return Type 384 542 715 2,116 57,294

ExecutionTime 27.06sec 45.17sec 4.35min 7.03min 7.53min

TABLE III: Summary of ENRE results in Python Projects

Concrete Entity Voc Scrapy Django Tensorflow- Tensorflow-
python models
Package 9 32 567 47 143
File 182 291 2,524 1,216 1,523
Class 610 614 6,048 2,545 1,360
Function 102 243 1,514 3,671 3,852
Method Member 2,655 2959 25,690 21,293 7,406
Entity Relation
Tmport 368 804 573 8 1,836
Extend 266 192 1,467 390 402
Set 647 3,804 28,383 64,383 41,814
Use 2,378 6,221 36,331 78,332 57,957
Call 1,118 1,509 2951 8,421 8,430
DynamicCall(Internal) 176 1,307 5,580 6,874 2,885
DynamicCall(External)4,423 5,952 295,881 191,440 32,968
ExecutionTime 13.98sec 15.43sec 1.90min 3.64min 2.30min

to assess ENRE’s accuracy. We chose 5 entity types and
3 common relations for accuracy verification on 2 Python
projects. The results obtained by Understand and ENRE are
shown in Table IV. To find the roots causes for the differences
we manually inspect the source code of each project.

For entities, Table IV shows ENRE gets the same number
of Package or File entities as Understand, but ENRE extracted
fewer functions and more method members, because 1) ENRE
only counts the outermost classes (or functions), ignoring
their inner ones, since inner ones are often for encapsulation.
Understand counts both inner and outermost ones, hence

TABLE IV: Result summary by ENRE and Understand

python-fire python-patterns
ENRE Understand ENRE Understand

Concrete Entity
Package 6 6 8 8
File 41 41 69 69
Class 58 58 160 162
Function 64 71 33 41
Method Member 300 255 497 412
Entity Relation
Import 63 63 56 56
Extend 18 18 39 39
Call 299 299 220 220
DynamicCall(Internal) 29 6 86 16

DynamicCall(External) 53 - 365 -

generates more functions. 2) ENRE always counts __init___
methods for class instantiation whether explicitly defined or
not. Understand only counts the explicitly defined ones, hence
generates fewer method members than ENRE.

For relations, Table IV shows that ENRE extracts the same
number of Import and Extend relations as Understand. But
ENRE extracts additional dynamic call relations. Understand
resolves partial Dynamic Internal Call relations only when the
object variable is self (that is, the callee is like self.m()).

Overall our evaluation shows that our extraction is quite
accurate for Python but goes beyond what Understand can
extract in terms of dynamic relations. We are in the pro-
cess of conducting more evaluations for verification. To our
knowledge, no existing tools are available to extract Golang
dependencies. We have manually verified the ENRE accuracy
on smaller Golang projects (the results are included in the
previous github URL). Table II shows ENRE can analyze
large-scale Golang projects, and we will manually inspect
these Golang projects to further validate ENRE.

IV. CONCLUSION

This paper introduces a general, extensible code entity and
relation extraction framework, ENRE. Users can extend this
framework to extract dependencies in different programming
languages.We have implemented two ENRE engines to process
Python and Golang to test the feasibility and efficiency of
ENRE. To our best knowledge, ENRE is the first framework
that supports Golang dependency extraction, and a comparison
with Python dependencies extracted from Understand verified
that implicit dependencies missed by Understand can be
detected by ENRE.

ACKNOWLEDGMENT

This work was supported by National Key RD Program of
China (2016 YFB1000903), National Natural Science Founda-
tion of China (61632015, 61772408, U1766215, 61721002,
61532015, 61833015), Ministry of Education Innovation Re-
search Team (IRT_17R86).

REFERENCES

[1] T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside, N. Medvidovic,
and R. Kroeger, “Comparing software architecture recovery techniques
using accurate dependencies,” in Proceedings of the 37th Intl Conference
on Software Engineering, vol. 2, 2015, pp. 69-78.

[2] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng, “Decoupling level: a

new metric for architectural maintenance complexity,” in Proceedings of

the 38th Intl Conference on Software Engineering, 2016, pp. 499-510.

W. Jin, T. Liu, Y. Qu, Q. Zheng, D. Cui, and J. Chi, “Dynamic structure

measurement for distributed software,” Software Quality Journal, vol. 26,

no. 3, pp. 1119-1145, 2018.

M. Fan, J. Liu, X. Luo, K. Chen, Z. Tian, Q. Zheng, and T. Liu, “Android

malware familial classification and representative sample selection via

frequent subgraph analysis,” IEEE Transactions on Information Forensics

and Security, vol. 13, no. 8, pp. 1890-1905, Aug 2018.

[5] “Understand,” https://scitools.com/features/.

[6] G. Gharibi, R. Tripathi, and Y. Lee, “Code2graph: automatic generation
of static call graphs for python source code,” in Proceedings of the 33rd
Intl Conference on Automated Software Engineering, 2018, pp. 880-883.

[7] “rexdep,” https://github.com/itchyny/rexdep.

[8] “Doxygen,” http://www.doxygen.nl.

[9] T. Parr, The definitive ANTLR 4 reference.

3

=

[4

=

Pragmatic Bookshelf, 2013.

